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Abstract

A polydisperse two-phase flow model is developed and used to analyze the effect of the bubble size on the

radial phase distribution in vertical upward channels. The two-fluid model is evaluated considering that the

bubble size distribution can be represented with groups of constant mass. The model accounts for inter-

facial momentum transfer terms arising from drag, lift, turbulent dispersion and wall forces for the different

bubble sizes. The turbulence is modeled with the k–e model for bubbly flow. A two-phase wall logarithmic
law is developed to evaluate the boundary conditions for the k–e and the two-fluid models. The turbulence
in the buffer and laminar near-wall regions is evaluated considering the asymptotic consistency of the k–e
model approaching the solid surface. The model is able to predict the transition from the near-wall gas

volume fraction peaking to the core peaking beyond a critical bubble size. The double gas volume fraction

peak experimentally observed when both, small and big bubbles, are present can be also simulated. The

model was numerically solved for fully developed flow by means of a finite difference method and the results

were compared against the experimental data measured by others in air/water vertical ducts.
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1. Introduction

Turbulent bubbly gas/liquid flow in ducts occurs in many applications in diverse industries such
as chemical, pharmaceutical, food and power, among others. The prediction of the phase
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velocities and distribution in the ducts is of paramount importance for the correct design of the
duct and for the prediction of the pressure drop.
Many experimental and numerical studies have been published related to the phase distribution

in steady-state, fully-developed flows in vertical ducts. Serizawa et al. (1975a,b) conducted an
exhaustive experimental study of the air/water flow in a vertical duct. The authors measured the
radial distribution of gas volume fraction, gas and liquid velocities and the turbulence structure at
different gas superficial velocities. Although they report the transition from bubbly to the slug
flow pattern, they inform that the range of mean bubble diameters in their experimental study was
approximately 4 mm. The authors report bubble diameters for bubbly flow but they do not inform
any bubble size measurement in the bubble-to-slug transition or for slug flow. Wang et al. (1987)
analyzed air/water flows studying, specially, the effects of the presence of gas bubbles on the
turbulence of the liquid. The authors do not give any information about the bubble size distri-
bution. Even at similar reported experimental conditions, there is substantial disagreement be-
tween the experimental data of Serizawa et al. (1975a,b) and Wang et al. (1987).
The first reference to the effect of bubble size in the phase distribution in a vertical channel appears

to be due to Sekoguchi et al. (1974), as mentioned by Liu (1997). They found that small bubbles are
attracted toward the wall, while bubbles larger than about 5 mm rise in the core of the duct.
Zun (1988, 1990) measured radial distribution of the gas volume fraction in a channel using a

bubble injector specially designed to control the bubble size. In the experiences, the bubble size
was maintained constant for low superficial gas velocities to prevent bubble coalescence and
breakup. The results show that the bubble size can be the key parameter to explain the differences
found between the experimental data of Serizawa et al. (1975a,b) and Wang et al. (1987).
Liu (1991) designed an experiment to observe the effect of the bubble size distribution on the

phase radial distribution. The author measured the radial profiles of gas volume fraction, bubble
impact rate and bubble mean diameter, for different gas and liquid superficial velocities. Liu and
Bankoff (1993a,b) measured the radial profiles of gas and liquid velocities and the turbulence
structure for mean bubble diameters ranging from 2 to 4 mm. In recent works, Liu (1997, 1998),
and Liu and Wang (2001) complement the study of Liu (1991) measuring radial profiles of tur-
bulent fluctuations, shear stress at the wall and interfacial area concentration.
Some numerical studies were carried out to predict the phase radial distribution in ducts. Antal

et al. (1991) developed a model based in the two-fluid approach (Ishii, 1975; Drew and Lahey,
1979) for laminar flow. Lopez de Bertodano et al. (1994) measured profiles of liquid velocity and
gas volume fraction in a duct of triangular section and used the two-fluid model to calculate the
turbulent two-phase flow. The model assumes that the turbulence induced by the bubbles can be
added linearly to the shear induced turbulence. Besides, the two-phase turbulent viscosity is cal-
culated by linear superposition of the shear induced and bubble induced turbulent viscosities. None
of the above-mentioned models can predict the convex shape of the gas volume fraction profile for
big bubbles in upward flow since they used a constant positive lift coefficient. Troshko and Hassan
(2001a,b) present a two-phase flow model that includes the near wall region and develop a two-
phase wall law. The described models rely on the assumption of monodisperse flow, so they are
unable to match the phase distribution found with flows formed with bubbles of different sizes.
In this work we develop a model for turbulent polydisperse two-phase flows. The formulation

uses the two-fluid model and the k–e model for two-phase flow (Lahey and Drew, 1999) to rep-
resent the turbulence.



Fig. 1. Breakup and coalescence process in a vertical channel.
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Such as is shown schematically in Fig. 1, in a steady-state, fully-developed flow condition, there
is an equilibrium of bubbles breakup and coalescence that results in a given bubble size distri-
bution. Near the wall, the high gas volume fraction due to the accumulation of small bubbles will
tend to coalesce forming larger bubbles that tend to travel to the center of the channel if they can
survive breakup caused by the high shear stress and turbulence intensity. At the center of the
channel, larger bubbles can breakup and the resulting small bubbles will tend to migrate to the
wall. In this paper we neglected this breakup and coalescence process; therefore it is only appli-
cable to flows in which the gas and liquid superficial velocities are low enough so that both the
coalescence and breakup are also negligible, though some experimental results indicate that even
at low flow rates the phenomena might be important.
The wall logarithmic law, valid for single-phase flows in the near-wall region, was corrected for

two-phase flows by means of a simplified model as first approximation. The near-wall turbulence
was solved studying the asymptotic consistency of the properties approaching the surface.
The polydisperse bubble population was solved using a multigroup approach (Carrica et al.,

1999). The two-phase equations were numerically solved for steady-state, fully-developed flow
using the method of finite differences.
2. Mathematical model

2.1. Two-fluid model

2.1.1. Mass conservation

The continuity equation of the two-fluid model for flows with no interfacial mass transfer is
(Ishii, 1975; Drew and Lahey, 1979):
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oðqkekÞ
ot

þr � ðqk~uukekÞ ¼ 0 ð1Þ
where e is the gas volume fraction, q is the density constant within each phase and~uu is the velocity.
The subscripts k¼ l or g denotes the liquid or gas phase.
We assume that the disperse phase can be represented by N groups of constant mass (Carrica

et al., 1999). Using this multigroup approach and assuming that the coalescence and breakup are
negligible, Eq. (1) represents the continuity equation for bubble group-g. Eq. (1) applied to
steady-state, fully-developed flow, results in no radial flow:
ur;k ¼ 0 ð2Þ
where ur;k is the averaged radial velocity of phase or group k.

2.1.2. Momentum conservation
The momentum equation for the phase or group k, with no break-up or coalescence, is (Ishii,

1975; Drew and Lahey, 1979; Carrica et al., 1999):
oðqkek~uukÞ
ot

þr � ðqkek~uuk~uukÞ ¼ �ekrpk þ qkek~gg þ ~MMk þ ekrðrRek þ skÞ

þ ½ðrRek � rRei Þ þ ðsk � siÞ	rek � ðpk � piÞrek ð3Þ
where ~MMk is the interfacial force calculated with averaged variables, sk and rRek are the viscous
shear and Reynolds stress tensors, respectively,~gg is the gravity acceleration and p is the pressure.
The subscripts i indicate that the variables must be evaluated at the interface. For steady-state,
fully-developed flow, and using Eq. (1), Eq. (3) results:
0 ¼ �ekrpk þ qkek~gg þ ~MMk þ ekrðrRek þ skÞ þ ½ðrRek � rRei Þ þ ðsk � siÞ	rek � ðpk � piÞrek ð4Þ
2.2. Constitutive equations

At this point closure laws are required for the interfacial force, ~MMk, and the stress tensors,
(rRek þ sk).
In the gas momentum equation the stress terms are smaller than the pressure gradient and

interfacial force terms, so usually they are neglected (Antal et al., 1991; Lopez de Bertodano et al.,
1994). In addition, the pressure in the gas phase is similar to the pressure at the interface, resulting
ðpg � piÞ 
 0.
In the liquid momentum equation, we assume that the difference between the interfacial stress

tensors and the stress tensors in the liquid phase, (rRel � rRei ) and (sl � si), are smaller than the
other terms. A similar hypothesis was adopted by Lopez de Bertodano et al. (1994).

2.2.1. Interfacial momentum
For steady-state, fully-developed flow, the interfacial force can be partitioned into four main

terms: drag, lift, wall force and turbulent dispersion:
~MMg ¼ ~MMD
g þ ~MM l

g þ ~MMw
g þ ~MMTD

g ð5Þ



M.S. Politano et al. / International Journal of Multiphase Flow 29 (2003) 1153–1182 1157
2.2.1.1. Drag force. The drag force per unit volume, ~MMD
g , for spherical bubbles of group-g was

modeled by Ishii and Zuber (1979) as:
~MMD
g ¼ � 3

8
egql

CDg
rg

~uuRg j~uuRg j ð6Þ
where rg is the radius of bubbles of group-g, ~uuRg is the relative velocity between the bubbles of
group-g and the liquid phase and CDg is the drag coefficient for which many correlations are
available (Ishii and Zuber, 1979; Ishii and Mishima, 1984; Tomiyama, 1998). The experimental
data used in this paper correspond mostly with conditions in churn–turbulent regime, in which the
flow becomes agitated and there is a significant bubble–bubble interaction by wake entrainment.
We found that the experimental results were best adjusted by the correlation of Ishii and Zuber
(1979) for the churn–turbulent regime, in which the drag coefficient is independent of the bubble
size and is given by:
CDg ¼ CD ¼ 8
3
e2l ð7Þ
2.2.1.2. Lift force. The lift force, ~MM l
g, can be written as (Drew and Lahey, 1979):
~MM l
g ¼ �egqlC

l
g~uuRg � ðr �~uulÞ ð8Þ
In Eq. (8), the lift coefficient of a bubble of group-g, Cl, can be expressed as (Tomiyama, 1998):
Clg

min½0:288tanhð0:121RegÞ;0:00105Eo3dg�0:0159Eo
2
dg
�0:0204Eodgþ0:474	 if Eog< 4

0:00105Eo3dg�0:0159Eo
2
dg
�0:0204Eodgþ0:474 if 46Eog610

�0:29 if Eog> 10

8><
>:

ð9Þ

where Reg ¼ ql~uuRg2rg=ll is the Reynolds number and Eog ¼ ðgðql � qgÞ4r2gÞ=r is the E€ootvos
number, with l the liquid molecular viscosity and r the interfacial tension. The modified E€ootvos
number of bubbles of group-g is:
Eodg ¼
gðql � qgÞd2H

r
ð10Þ
with dH the maximum bubble horizontal dimension. The ratio between the spherical bubble di-
ameter and the maximum horizontal dimension of a spheroid bubble, for bubbles of equal mass,
is given by:
W ¼ 2Rg
dH

� �3
ð11Þ
where W is evaluated with the empirical correlation of Wellek et al. (1966):
W ¼ ð1þ 0:163Eo0:757Þ�1 ð12Þ

Notice that with Tomiyama�s correlation the lift coefficient changes sign for a bubble diameter

of 5.6 mm. Also, note that the widely used lift coefficient of 0.1 is attained for a bubble radius
of about 2.6 mm.
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2.2.1.3. Wall force. The model proposed by Antal et al. (1991) to explain the force that a wall
exerts on the disperse phase, ~MMw

g , is:
~MMw
g ¼ Cw1

�
þ Cw2

rg
y

�
egql

~uu2Rg
rg

~nnw ð13Þ
where y is the distance from the wall, ~nnw is the outward normal to the wall and the model con-
stants are Cw1 ¼ �0:1 and Cw2 ¼ 0:147. Eq. (13) was corrected by Tomiyama (1998) to avoid the
attraction force by the wall predicted for large y:
~MMw
g ¼ 0 if y >

Cw2
Cw1

rg ð14Þ
2.2.1.4. Turbulent dispersion. The turbulent dispersion, ~MMTD
g , was modeled by Carrica et al. (1999)

as:
~MMTD
g ¼ � 3

8
qlm

t C
D

rg
j~uuRg jreg ð15Þ
where mt is the turbulent viscosity.

2.2.2. Molecular stress tensor

The viscous shear stress tensor in the liquid phase is given by:
sl ¼ qlmðr~uul þr~uuTl Þ ð16Þ
where m is the liquid molecular cinematic viscosity.
2.2.3. Turbulent stress tensors
The Reynolds stress tensor for the liquid phase can be written as:
rRel ¼ ql½mtðr~uul þr~uuTl Þ � 2
3
kI	 þ rbl ð17Þ
where k is the turbulent kinetic energy and rbl is the turbulence induced stress due to the motion of
the liquid around the bubbles. k is modeled using the k–e model for two-phase flows (Lahey and
Drew, 1999):
el
dk
dt

þ el~uulrk ¼ r � ðelmtrkÞ þ Pl � ele þ el/k ð18Þ
where the turbulence production rate, Pl, is:
Pl ¼ elm
tðr~uul þr~uuTl Þ : r~uul ð19Þ
the turbulent dissipation rate, e, is given by:
el
de
dt

þ el~uulre ¼ r � elmt

re
re

� �
þ Ce1Pl

e
k
� elCe2

e2

k
þ al/kCe2

e
k

ð20Þ
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and the bubble-induced turbulence source, /k, is (Lee et al., 1989):
/k ¼ Cp

XN
g¼1

egj~uuRg j
3

2rg
ð21Þ
with Cp ¼ 0:25 for non-interacting spherical bubbles. For non-spherical bubbles Cp is larger.
Applying potential flow to a spheroid bubble moving in helical path in water, the range of Cp can
be extended to (Lopez de Bertodano et al., 1994):
0:5 < Cp < 0:7 ð22Þ

If the effect of a wake is considered these numbers could be even bigger. In the wall region the

bubbles are deformed and it is possible that the wake effects became more important due to the
concentration of small bubbles in this zone. Unfortunately, there are not models available that
consider all these effects together. In this work we adopted Cp ¼ 1. It is possible to note that, for
the experimental conditions used, Eq. (21) with Cp ¼ 1 give similar results to the model proposed
by Troshko and Hassan (2001a) for the bubble turbulence source.
Due to the lack of additional information for two-phase flows, and because the model must

reduce to the k–e model for single-phase flows when the gas volume fraction tends to zero, the
constants Ce1, Ce2, re are taken to be the same as in the standard k–e model for single-phase flow:
Ce1 ¼ 1:44, Ce2 ¼ 1:92 and re ¼ 1:3. The turbulent viscosity is expressed by:
mt ¼ Cl
k2

e
ð23Þ
where Cl ¼ 0:09.
The bubble induced turbulence was modeled using potential flow around a bubble (Nigmatulin,

1979; Drew and Passman, 1998):
rbl ¼ �ql
1

20

XN
g¼1

eg½~uuRg~uuRg þ 3~uuRg �~uuRgI	 ð24Þ
2.2.4. Jump conditions

The jump interfacial condition for a system with no mass transfer and neglecting surface
tension, reduces to:
~MMl þ
XN
g¼1

~MMg ¼ 0 ð25Þ
The average pressure at the interface is smaller than the pressure in the liquid phase. Antal et al.
(1991) and Lopez de Bertodano et al. (1994) modeled this effect using potential flow around a
sphere (Lamb, 1932) and taking into account the contribution of all equal-size bubbles. For
polydisperse flow we must to considerate the effect of the bubbles of different sizes, for this end we
propose to weight the relative velocity with the gas volume fraction:
ðpi � plÞ ¼ �Cpqlel

PN
g¼1 egj~uuRg j

2PN
g¼1 eg

ð26Þ
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3. Numerical method

3.1. Equations in cylindrical geometry

In order to outline the numerical method, the conservation equations, the constitutive relations
and the jump conditions have been rewritten for steady-state, fully-developed flow in cylindrical
geometry. It is important to note that the only non-zero term of the interfacial momentum in the
axial direction is the drag force; while in the radial direction the lift, wall force and turbulent
dispersion terms are important. In addition, according to Eq. (26), the axial pressure gradient for
fully-developed flow is the same for gas and liquid phases.

Group-g gas––axial direction
0 ¼ � dp
dz

� qgg � ql
3

8

CD

rg
juRg juRg ð27Þ
where uRg is the relative velocity between bubbles of group-g and the liquid phase, in the axial
direction.

Group-g gas––radial direction
0 ¼ �eg
dpg
dr

� ClgegqluRg
dul
dr

� Cw1

�
þ Cw2

rg
y

�
egqljuRg j

2

rg
� ql

3

8
mt
CD

rg
juRg j

deg
dr

ð28Þ
Liquid phase––axial direction
0 ¼ �el
dp
dz

� elqlg þ
XN
g¼1

egql
3

8

CD

rg
juRg juRg þ elql

1

r
d

dr
rðm
	

þ mtÞdul
dr



ð29Þ
Liquid phase––radial direction
0 ¼ �el
dpl
dr

þ
XN
g¼1

ClgegqluRg
dul
dr

"
þ Cw1

�
þ Cw2

rg
y

�
egqljuRg j

2

rg
þ ql

3

8
mt
CD

rg
juRg j

deg
dr

#

� elql
2

3
k

� �
� 3

20
el
XN
g¼1

u2Rg
deg
dr

�
XN
g¼1

Cpð1� egÞqlj~uuRg j
2 del
dr

ð30Þ
Adding Eq. (28) for all groups and Eq. (30), and using Eq. (26) and its derivative to evaluate the
liquid radial pressure gradient, the gas radial pressure gradient results:
dpg
dr

¼ � 2
3

elql
dk
dr

� 3

20
el
XN
g¼1

u2Rg
deg
dr

�
Cpelql

del
dr

ð1� elÞ2
XN
g¼1

u2Rgeg

� Cpelql
ð1� elÞ

del
dr

XN
g¼1

u2Rgeg

 
þ 2el

XN
g¼1

uRg
duRg
dr

eg þ el
XN
g¼1

u2Rg
deg
dr

!
ð31Þ
The k–e model, for steady-state, fully-developed flow, reduces to:
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0 ¼ � 1
r
d

dr
relmt

dk
dr

� �
þ elm

t dul
dr

� �2
� ele þ elCp

XN
g¼1

egjuRg j
3

2rg
ð32Þ

0 ¼ � 1
r
d

dr
r
elmt

re

de
dr

� �
þ Ce1elm

t dul
dr

� �2 e
k
� elCe2

e2

k
þ elCp

e
k

XN
g¼1

egjuRg j
3

2rg
ð33Þ
3.2. Boundary conditions

For a given inlet bubble size distribution, the system of Eq. (27) are algebraic expressions for
the average relative velocity between bubbles of group-g and the liquid. The system of Eq. (28),
using Eq. (31) to evaluate the gas radial pressure gradient, is formed by first-order partial dif-
ferential equations, and require one boundary condition for each group. For this analysis we
adopted zero derivative in the center of the duct subject to the restriction imposed by the known
gas superficial velocity:
jg ¼
2
R Rc
0

ugegrdr
R2c

ð34Þ
where Rc is the radius of the pipe and ug is the velocity of the bubbles of group-g. Eq. (29) is a
second-order elliptic partial differential equation and needs two boundary conditions. The first
condition selected is zero derivative in the center of the duct. The second condition must be a
Dirichlet condition. In the study of laminar flow of Antal et al. (1991) the no slip condition in the
wall is used. In our case, the no slip condition is not appropriate because the standard k–emodel is
not valid in the near-wall region. Instead, the velocity is specified at some distance from the wall
(Wilcox, 1998). Lopez de Bertodano et al. (1994) used the logarithmic law of the wall as in single
phase flow. We noted that, when the single-phase wall law is used, the profiles of liquid velocity
and gas volume fraction change markedly with the selected distance where the boundary condi-
tions are introduced. Moreover, there is experimental evidence that the single-phase logarithmic
law is not valid for turbulent two-phase flows: the results of Sato et al. (1981) show an evident
discrepancy between the experimental velocity profile and the single-phase logarithmic law;
Nakoryavok et al. (1996) observed that the turbulent fluctuations close to the wall are reduced
in downward flow as compared to a single-phase turbulent flow.
Several attempts have been made in the past to modify the usual single-phase wall-law

boundary conditions to account for the presence of bubbles. Mari�ee et al. (1997) studied the
turbulent structure of a bubbly boundary layer. The authors proposed a modified logarithmic wall
law that fits adequately their experimental liquid velocity data for low gas volume fraction. The
adjustable constants of their new wall law become function of the flow parameters. A two-phase
logarithmic law was deduced by Troshko and Hassan (2001a) using Sato�s model for the eddy
diffusivity. The new law has an empirical function deduced to fit the experimental data of Mari�ee
et al. (1997). The two-phase and the single-phase logarithmic laws were compared against the
experimental data of Sato et al. (1981) and Wang et al. (1987). In a latter work Troshko and
Hassan (2001b), used a two-fluid model and a k–e turbulence model with their two-phase loga-
rithmic law to predict flows in ducts. The model was validated and compared against several
experimental data (Serizawa et al., 1975a,b; Wang et al., 1987 and Liu, 1998).
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In this work we prefer a simplified approach, in which a first order correction to the logarithmic
law of the wall was introduced to account for two-phase flows assuming similar hypothesis to
those in single-phase flows. As will be shown later, the proposed wall law is simple to implement
and properly predicts the main features of the flows analyzed here, though tends to underpredict
the shear stress at the wall.

3.3. Two-phase wall logarithmic law

In order to develop a two-phase logarithmic law we use the conservation equations with ap-
propriated simplifications. In the logarithmic region the interfacial momentum transfer, molecular
diffusion and the pressure gradient are small compared with the turbulent diffusion term, so Eq.
(29) reduces to:
0 ¼ ql
d

dy
elm

t dul
dy

	 

ð35Þ
where the near-wall pipe curvature was neglected. Eq. (35) shows that the turbulent shear stress,
sxy ¼ qlelm

tdul=dy, is constant in the logarithmic region, therefore sw ffi sxy in this region, with sw
the shear stress at the wall. Furthermore, we assume that in the logarithmic region, the gas volume
fraction and the turbulent kinetic energy are essentially constant. This approximation is very
strong and is valid only in a small region near the wall since there is where the principal variations
of the variables occur. The hypothesis of constant turbulent kinetic energy is also assumed in
single-phase flow. In addition, assuming that the bubble source terms are smaller than the other
terms of Eqs. (32) and (33), the k–e model simplifies to:
0 ¼ � d

dy
elm

t dk
dy

� �
þ elm

t dul
dy

� �2
� ele ð36Þ

0 ¼ � d

dy
elmt

re

de
dy

� �
þ Ce1elm

t dul
dy

� �2
� elCe2

e2

k
ð37Þ
The solutions of Eqs. (35)–(37) are:
ul ¼
u�ffiffiffi
el

p ln yþ

K

�
þ b
�

ð38Þ

k ¼ u2�
el

ffiffiffiffiffiffi
Cl

p ð39Þ

e ¼ u3�
e3=2l Ky

ð40Þ
where
yþ ¼ yu�ql
l

ð41Þ

u� ¼
ffiffiffiffiffi
sw
ql

r
ð42Þ
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with, K ¼ 0:435 and b ¼ 5:4. Eqs. (38)–(40) are the boundary conditions for Eqs. (29), (32) and
(33). The distance from the wall in which the boundary conditions are set, ylim, must satisfy
306 yþ 6 100. Similarly to the hypothesis adopted by Lahey and Drew (1999) to evaluate the
constants of the k–e model for two-phase flow and due to the lack of other evidence we assume
that the constants of the logarithmic law and the distance from the wall are the same as those for
single-phase flow.
At this point it should be noticed that to determine the gas volume fraction is necessary to

model the turbulence in the buffer and laminar near-wall regions. To this end we analyzed the
asymptotic consistency of the turbulence model near the wall in a similar fashion to the low
Reynolds number turbulence models in single-phase flow (Wilcox, 1998). The near wall turbu-
lence kinetic energy and dissipation can be written as:
k ¼ Cky2 þOðy3Þ ð43Þ

e ¼ 2Ckm þOðyÞ ð44Þ
The constant Ck ¼ u2�=ð
ffiffiffiffiffiffi
Cl

p
ely2limÞ was evaluated considering the boundary condition given by Eq.

(39). So, in the near-wall region, k is given by Eq. (44) with k ¼ 0 at the wall and e is a constant
given by Eq. (45).
3.4. Solution procedure

The equations of the model were discretized using a finite differences method. The matrices
resulting from the discretization of Eqs. (29), (32) and (33) are tridiagonal. The system of non-
linear equations was solved with several iterative processes. A flow chart of the solution procedure
is shown in Fig. 2. Due to the very strong coupling between the equations, they were alternatively
solved using initial seeds. A strong relaxation was necessary to attain convergence. The process
was stopped when the norm L1 of the error in all variables was lower than 10�6. To get these
residuals the gas volume fraction error must be lower than 10�8.
In the first process the gas/liquid relative velocity and the gas volume fraction are calculated

using Eqs. (27) and (28) with the radial pressure gradient evaluated with Eq. (31). The liquid
velocity, turbulence quantities and the axial pressure gradient are known for this process, taken
from the last solution or from the initial guess. As the liquid volume fraction is present in Eq. (31),
iterations are necessary to satisfy the input gas superficial velocity for each group.
Once the gas volume fraction and relative velocity are determined, the liquid velocity, k and e

are calculated with Eqs. (29), (32) and (33). Non-simultaneous solution of the k and e equations
require iterations, also necessary to evaluate the boundary conditions.
The boundary conditions were calculated using the already described two-phase logarithmic

law. The process begins with a guess distance from the wall ylim where the boundary conditions are
evaluated. In order to calculate the shear stress, the liquid velocity derivative is determined in ylim
using Eq. (29) with the turbulence quantities taken from the last solution or from the initial guess.
It can be noted that is not necessary to evaluate the liquid velocity profile at this point. Next, u� is
calculated with Eq. (42) and after that yþ, ul, k and e are calculated in ylim with Eqs. (38)–(41).
Once the boundary conditions are determined, the liquid velocity profile and the profiles of

k and e are calculated. The liquid velocity can be evaluated using a forward elimination



Fig. 2. Flow chart of the iterative solution procedure.
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and backward substitution procedure in a non-iterative process. To avoid global instability in
the calculation of the profiles of k and e, we employed positive values for the turbulent viscosity
and the coefficients of Eqs. (32) and (33), which may become temporarily negative during the
iterative process and inhibit convergence (Lew et al., 2001). After the k–e model converges, the
shear stress and the boundary conditions are again calculated until the global convergence is
obtained.
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Known the liquid velocity and liquid volume fraction profiles, the liquid superficial velocity is
verified. If the liquid superficial velocity is not satisfied the pressure axial gradient is modified and
the calculus of liquid velocity, boundary conditions and the k–e model are repeated. Unfortu-
nately, axial pressure gradient was not reported in the available experimental data.
The turbulence near the wall is calculated with Eqs. (43) and (44). Finally, the condition

306 yþ 6 100 is verified.

3.5. Comments about the model

The set of constitutive equations and boundary conditions presented herein contain most of
the relevant physical mechanisms of the two-phase flow described. Given the complexity of the
phenomena, the simplest modeling was used as long as it captured the global physics of the
process. Near the wall, other mechanisms are present that are not included in this model due to
the simplifications used. Particularly, when the bubbles are concentrated near the wall the models
used for the turbulent kinetic energy and dissipation bubbles sources are not valid because they
were deduced assuming potential flow around a single sphere with no consideration to bubble–
bubble interaction, deformation due to shear stress near the wall, etc. In addition, several of the
forces acting on the bubbles were derived assuming homogeneous flow, a condition that is not
fulfilled near the wall, were the length scales can be much smaller than the bubble size. Besides, the
use of the same constants as in single flow for the k–e model and the near-wall logarithmic law are
only justified by the behavior of the two-phase flow model when the gas volume fraction tends to
zero.
The interfacial force terms should also be modeled more carefully near the wall. The turbulent

dispersion model used, though appropriate for essentially constant Stokes number flows (Moraga
et al., 2001), may require improvement for the case of interaction with large turbulent structures
(Tran-Cong et al., 2001). The drag coefficient, Eq. (7), was derived for the case of unbounded
flows and is not necessarily applicable near a solid wall. Similar discussion is valid for other in-
terfacial forces.
Furthermore, the two-phase logarithmic law presented here assumes that both the turbulent

kinetic energy and the gas volume fraction are constant between 306 yþ 6 100. This could be an
even stronger assumption than in single-phase flow, and no experimental evidence supports this
statement.
Another important point is that the calculation of the gas volume fraction requires k and e near

the wall as input. In this work we modeled the near-wall turbulence studying the asymptotic
behavior of the solution of model k–e. This turbulence model changes with the selection of the
distance yþlim where the boundary conditions are evaluated.
Because of the above-mentioned causes, the gas volume fraction distribution depends on the

distance to the wall yþlim where the k–e boundary conditions are evaluated. While y
þ
lim increases, the

peak of gas volume fraction near the wall decreases. According to the numerical results an in-
crease of yþlim is equivalent to a diffusion term. Fig. 3 shows the sensitivity of the liquid and gas
velocity profiles to different choices of yþlim, both for the case of the two-phase log-law and the
single-phase log-law, for the case of the experiment of Liu and Bankoff (1993a) with jl ¼ 0.753 m/s
and jg ¼ 0.23 m/s. Even though the velocity profiles have a small change using the proposed
two-phase log-law, as compared to the case using the single-phase log-law, the gas volume



Fig. 3. Effect of the selection of yþlim on the velocity profiles.
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Fig. 4. Effect of the selection of yþlim on the gas volume fraction profile.
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fraction is sensible to these small variations in velocity profile, due to the large change in the
velocity gradient at the wall. The effect of the choice of yþlim on the gas volume fraction distribution
is shown in Fig. 4, compared against the data of Liu and Bankoff (1993b). It is clear that yþlim still
has a large effect on the gas distribution, and that a larger yþlim tends to have a diffusive effect. In
this work the distance yþlim was a control parameter to fit the experimental data. This point is the
principal drawback of the proposed model. Clearly, more elaborated models are necessary in the
near-wall region.
Even with the limitations mentioned, the numerical results of the polydisperse two-phase model

fit reasonably well the experimental data. With the correction of the logarithmic law for two-
phase flow the liquid velocity profile does not change with the selection of yþlim, as occurs with
the standard k–e model (Lopez de Bertodano et al., 1994). This is a considerable advantage
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comparing to the use of the standard single-phase flow k–e model, because if the liquid velocity
profiles changes, the lift force, the turbulent dispersion and other processes forces over the
bubbles are modified and the gas volume fraction profile is completely different every time yþlim is
changed.
4. Results

The model was compared against the experimental data measured by Serizawa et al. (1975a,b),
Zun (1990), Liu and Bankoff (1993a,b), Liu and Wang (2001) and Liu (1998) in air/water vertical
ducts. To simulate the experiments the duct was discretized in 52 radial nodes with continuous
finer discretization near the wall (25 nodes from r=R ¼ 0:98 to r=R ¼ 1), where the variables have
the largest variations. As a first representation, the bubble mass was discretized in three groups.
These three groups can be selected with any size, in particular all can be of the same diameter for
single-bubble size runs, or can simulate bimodal distributions.
The distance where the boundary conditions were evaluated was an adjustable parameter. The

range used to do the simulations was 50 < yþlim < 55, and it was used for all the experiences.
The shear stress data by Liu (1997) in a circular pipe 0.0572 m inner diameter were used to test

the proposed two-phase log-law. Fig. 5 shows the model predictions and the experimental data for
jg ¼ 0:1 and 0.2 m/s and for jj ¼ 1 and 4 m/s, with jj the superficial velocity of a liquid jet flowing
through the bubble injector and that determines the size of the bubbles. The single-phase shear
stress is also included in Fig. 5. We note that the model tends to correct the shear stress towards
the experimental value, though underpredicts the shear stress for low gas superficial velocities.
The more elaborate model of Troshko and Hassan (2001b, see Figs. 28–30) do a slightly better
job, but still tends to underpredict the shear stress.
4.1. Experimental data of Serizawa et al. (1975a,b)

The gas volume fraction and liquid velocity profiles predicted by the model are compared with
the experimental data of Serizawa et al. (1975b) in a bubble column of 0.06 m internal diameter
and 2.1 m long. The bubble radius used for the simulations was the reported by the authors,
rg ¼ 0:002 m.
The authors measured the gas volume fraction with a resistive probe 0–2 mm in diameter, with

a sampling time of 1–3 min. Hot film anemometry was used to measure the liquid velocity profiles.
The fully-developed flow was obtained in a dimensionless axial position z=Rc ¼ 60.
The results, for gas superficial velocity jg ¼ 0:215 m/s and liquid superficial velocity jl ¼ 1:03 m/s,

are shown in Figs. 6 and 7. The gas volume fraction presents a peak near the wall, due to the lift
force that cause the migration of small bubbles towards wall. This already ‘‘classic’’ behavior has
been modeled by Lopez de Bertodano et al. (1994). These authors used the lift coefficient as
adjustable parameter to obtain a reasonable fit of the experimental data. The turbulent energy
production, calculated by Eq. (20), is compared with the experimental data shown by Serizawa
et al. (1975b) in Fig. 8. As shown by the figures, the agreement of the model with the data is
satisfactory.



Fig. 5. Comparison of the wall shear stress predicted by the model with experimental data.
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Serizawa et al. (1975b) (symbols).
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4.2. Experimental data of Zun (1990)

Zun measured the gas volume fraction profile by microresistivity probes of 0.011 mm tip di-
ameter, in a square-section channel, 0.254 m inside, for a liquid superficial velocity jl ¼ 0:43 m/s.
Two separated single nozzles were used to generate air bubbles of two different well-controlled
sizes.



Fig. 7. Liquid velocity profile for jg ¼ 0:215 m/s and jl ¼ 1:03 m/s. Model (curve) and experimental data of Serizawa
et al. (1975b) (symbols).

Fig. 8. Turbulent energy production profile for jg ¼ 0:215 m/s and jl ¼ 1:03 m/s. Model (curve) and data of Serizawa
et al. (1975b) (symbols).
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The low liquid superficial velocity causes an important error in the simulation of the turbulence
because the near-wall logarithmic, buffer and laminar zones take up an important part of the duct.
As the author did not report the gas superficial velocity, jg was used as an adjustable parameter to
obtain the agreement between the experimental data and the model.
Fig. 9 compares the model results with the experimental data. The simulation was performed

with the bubble sizes measured by the author rg ¼ 0:00205 m, rg ¼ 0:0032 m and a combination of
these two sizes. It can be noted that the gas volume fraction profiles change markedly with the
bubble size. For bubbles with rg ¼ 0:00205 m the gas volume fraction shows a peak at the wall,
while that for bubbles with rg ¼ 0:0032 m the gas volume fraction profile have convex shape. This
behavior can be explained considering that the smaller bubbles accumulate near the wall while the



Fig. 9. Gas volume fraction profile for jl ¼ 0:43 m/s. Model (curves) and data of Zun (1990) (symbols).
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bigger ones tend to concentrate at the center of the tube. In the model this behavior is caused by
the change in sign of the lift coefficient beyond a critical size.
The model is also capable to predict the double peak observed when the bubbles have two

distinct different sizes. It is important to note that the resulting gas volume fraction is not the sum
of the effect of each size considered isolated since the liquid velocity, the turbulence and the radial
pressure gradient depends on the total gas volume fraction. Therefore the correct way to simulate
these flows is with a polydisperse model that considers different bubble sizes simultaneously, in a
two-way coupling between the gas and liquid equations.
Figs. 10 and 11 show the importance of the different bubble lateral force terms for the cases

considered in this section. Plotted are the lift force (Eq. (8)), turbulent dispersion (Eq. (15)), wall
Fig. 10. Radial forces predicted by the model for Zun�s case with rg ¼ 0:00205 m.



Fig. 11. Radial forces predicted by the model for Zun�s case with rg ¼ 0:0032 m.
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force (Eq. (13)) and pressure force. The pressure force (Eq. (31)) has been split into liquid induced
turbulence (first RHS term), bubble induced turbulence (second RHS term), and interfacial
pressure (rest of the RHS). For small bubbles (Fig. 10), the near wall forces are dominant, mainly
the lift, wall and turbulent forces. It is interesting the change in sign of the turbulent dispersion
term at the peak in gas volume fraction. For large bubbles (Fig. 11) the lift and turbulent dis-
persion forces, and to a less extent pressure forces, are the main contributions to the force balance.
Another interesting point is that the model agrees better with the behavior of large bubbles than

for small bubbles. This could be due to a better work of the proposed turbulence model when
there is no wall peaking in the gas volume fraction.
4.3. Experimental data of Liu and Bankoff (1993a,b)

Liu and Bankoff (1993a,b) measured the radial profiles of gas volume fraction and liquid and
bubble velocities using hot-film anemometer probes and a dual-sensor resistivity probe of about
0.005–0.008 mm tip diameter. The test section was a vertical duct, 2.8 m long, 0.038 m inner
diameter. The bubble generator had 64 equally-spaced needles of 0.1 mm diameter at the upper
part of the inlet plenum, to obtain a uniform size distribution of small bubbles with 0.002–0.004 m
mean diameter.
The model results, for bubbles with rg ¼ 0:0015 m, gas superficial velocity jg ¼ 0:23 m/s and

liquid superficial velocity jl ¼ 0:753 m/s, are compared with the experimental data of Liu and
Bankoff (1993b) in Figs. 4 and 12. In this case the numerical results shown a good agreement with
the experimental data except near the wall where the measured velocities are bigger than those
predicted by the model. These differences can be due to some error reporting the experimental
data, because the experimental liquid velocity at the wall is not zero, a condition that the model



Fig. 12. Profiles of liquid and gas velocities. Model (curves) and experimental data of Liu and Bankoff (1993b) (d gas

velocity and j liquid velocity).

Fig. 13. Gas volume fraction profile by the model (curves) for the experimental conditions measured by Liu and

Bankoff (1993b) (symbols).
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always meets. In addition, the drag coefficient of Eq. (7), which plays an important role to cal-
culate the drift velocity, is appropriate for unbounded bubbles and therefore inaccurate near the
wall.
We include in Fig. 13 data for jl ¼ 1:087 m/s, jg ¼ 0:027; 0:112; 0:23 m/s to show the ability of

the model to predict the change on the peak in gas volume fraction for different gas superficial
velocities. Though the trend is correct, the model tends to slightly overpredict the peak at high gas
superficial velocities and underpredict for low superficial velocities.
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4.4. Experimental data of Liu and Wang (2001)

Liu and Wang (2001) measured the profiles of gas volume fraction, bubble impact rate and
bubble mean diameter, for different gas and liquid superficial velocities in a bubble column, 8 m
long and 0.0572 m inner diameter. The resistivity probe used was the same previously reported
by Liu (1991) and by Liu and Bankoff (1993b).
The bubble size was controlled by a bubble generator in which compressed air was injected

through a sintered cylinder into the water and was sheared away by a high speed water jet (Liu,
1991). The bubble size was controlled by setting the nozzle liquid jet superficial velocity jj. As
reported by Liu and Wang (2001), the bubble size depends also on the axial distance to the
injection point, which means that this experiment is not fully developed, probably due to an
incomplete migration of bubbles towards the center or wall of the pipe, or due to breakup-
coalescence phenomena. Unfortunately, the authors only report mean bubble sizes at the mea-
surement station, L=D ¼ 60, and not bubble size distributions, which would have provided less
degrees of freedom to fit the experimental data. Therefore the bubble size distribution at the inlet
was guessed such that the total jg is satisfied and that the mean bubble size is honored. In ad-
dition, the shape of the distribution can be chosen and still satisfy the previous conditions, so the
final choice was made to obtain a good agreement with the experimental data. The distributions
used in this case are reported in Table 1.
The bubble impact rate is the number of bubbles that touch the tip of the resistivity probe in

one second. In order to compare with the experimental data, the model bubble impact rate, fi, was
calculated using the expression proposed by Sanz et al. (1995):
Table

Size d

jj (m

1

4

fi ¼
3

4

XN
g¼1

egug
rg

ð45Þ
The local mean bubble size reported by Liu and Wang (2001) was determined from the mea-
surements of the bubble chord length, based on statistical processing of the bubble residence time
in gas, assuming that the bubbles are spherical and that the bubble motion is unidirectional. With
the model variables, the mean bubble diameter, �ddb, was evaluated with the expression:
�ddb ¼
3

2

PN
g¼1 egug
fi

ð46Þ
1

istributions used for the experiments of Liu and Wang (2001)

/s) jg (m/s)

0.1 0.2

40% (3.0 mm) 40% (4.0 mm)

60% (7.0 mm) 60% (8.0 mm)

35% (3.0 mm) 35% (4.5 mm)

50% (4.0 mm) 50% (5.0 mm)

15% (6.5 mm) 15% (7.5 mm)
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Figs. 14 and 15 show the experimental data and the predictions of the model, for jl ¼ 2 m/s and
gas superficial velocities jg ¼ 0:2 m/s and jg ¼ 0:1 m/s in a dimensionless axial position z=Rc ¼ 60.
The open symbols represent flows with low nozzle jet velocity (jj ¼ 1 m/s) and big bubbles while
that the solid symbols correspond to high nozzle jet velocity (jj ¼ 4 m/s) where the bubble size is
reduced drastically and the bubbles are distributed more uniformly in the duct.
We can see that for smaller bubbles (�ddb 
 4–5 mm) the gas volume fraction and the bubble

impact rate present a peak near the wall representing that the largest part of the bubbles are
pushed against the wall. When the bubble size distribution has simultaneously big and small
bubbles a second peak develops at the center of the duct, and the peak near the wall decreases
correspondently, as already reported in the measurements by Zun (1990).
Fig. 14. Gas volume fraction profiles. Model (curves) and experimental data of Liu and Wang (2001) (symbols).
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Fig. 15. Mean bubble diameter profile. Model (curves) and experimental data of Liu and Wang (2001) (symbols).



Fig. 16. Bubble impact rate profiles. Model (curves) and experimental data of Liu and Wang (2001) (symbols).
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Notice that the gas volume fraction and bubble impact rate peaks near the wall are well
represented by the model, as well as the behavior of the gas volume fraction and bubble im-
pact rate profiles for large and small bubbles. The mean bubble diameter is also properly pre-
dicted.
It is possible to note in the experimental data in Fig. 16 a trend to get slightly larger bubbles at

the wall. This behavior cannot be predicted by the model, and could be caused by bubble co-
alescence near the wall, and/or bubble elongation due to shear stress, which would produce an
experimentally larger bubble chord. Should these bubbles be really larger, they would migrate
toward the center of the channel, while the small bubbles arising from bubble breakup will
migrate toward the wall. This effect can also be noted in the data measured by Liu (1998), dis-
cussed on the next section. The inclusion of bubble breakup and coalescence is necessary in order
to get a model able to predict such a behavior. This improvement of the model is left for a future
paper.
4.5. Experimental data of Liu (1998)

The experimental data by Liu (1998) provide an opportunity to test the model against turbu-
lence data. This has already been recognized by Troshko and Hassan (2001b), who compare their
model of bubbly flow turbulence against this set of data. The experimental setup is described in
detail in their paper and is similar to the system used by Liu and Wang (2001) already reported
in Section 4.4.
We use the data for jg ¼ 0:1 m/s, jl ¼ 1 m/s and jj ¼ 0:5 and 6 m/s, this last parameter already

defined in Section 4.4 and used to change the bubble size. In Fig. 17 we show a comparison of the
predicted average bubble diameter with the experimental data for the cases of large and small
bubbles. Also as a reference, the single size used by Troshko and Hassan (2001b) is included.
A good fit is obtained with the exception of a region where the model underpredicts the



Fig. 17. Mean bubble diameter profiles predicted by the model compared against the experimental data of Liu (1998)

and the model of Troshko and Hassan (2001b) for the cases with large and small bubbles.

Table 2

Size distributions used for the experiments of Liu (1998)

jj (m/s) jg (0.1 m/s)

0.5 25% (3.6 mm)

17% (5.5 mm)

58% (10.2 mm)

6 75% (4.0 mm)

25% (12.5 mm)
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bubble size near r=R ¼ 0:75. The bubble sizes distributions used in this set of data are reported in
Table 2.
Figs. 18–20 show the gas volume fraction, liquid velocity and the rms of the axial liquid velocity

fluctuations for the case of jj ¼ 6 m/s. In all the figures the experimental data, the model by
Troshko and Hassan (2001b) and the results of the present model with uniform size (same as
Troshko and Hassan) and polydisperse are shown. It is clear that the polydisperse model obtains a
better match than the single size model for all the variables tested. The liquid velocity near the
wall is better matched in the model by Troshko and Hassan (2001b), but at the core of the duct
the present model shows much better results. The axial turbulence is also better matched by the
polydisperse model. Near the wall all models give very similar results.
The data in Fig. 18 shows a trend to accumulate bubbles at the center of the duct. Our

polydisperse model can only follow that trend with large bubbles, so a better match can be ob-
tained increasing the amount of large bubbles on the size distribution. Similarly, the data shows



Fig. 18. Gas volume fraction profiles predicted by the model compared against the experimental data of Liu (1998) and

the model of Troshko and Hassan (2001b) for the case of small bubbles.

Fig. 19. Liquid velocity profiles predicted by the model compared against the experimental data of Liu (1998) and the

model of Troshko and Hassan (2001b) for the case of small bubbles.
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larger gas volume fraction at the wall than the one achieved by the model. Though the gas volume
fraction data can be much better matched changing the size distribution, the average radius re-
ported in Fig. 17 cannot be matched. Reason for this inconsistency can be bubble elongation and/
or coalescence near the wall or a non-fully-developed flow.



Fig. 20. Profiles of the RMS axial liquid velocity fluctuations predicted by the model compared against the experi-

mental data of Liu (1998) and the model of Troshko and Hassan (2001b) for the case of small bubbles.

Fig. 21. Gas volume fraction profiles predicted by the model compared against experimental data of Liu (1998) and

model of Troshko and Hassan (2001b) (case of large bubbles).
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The model is compared with experimental data of gas volume fraction, liquid velocity and the
rms of the axial liquid velocity fluctuations for the case of large bubbles in Figs. 21–23. Again, the
polydisperse model does a better job than both single-size models predicting all the variables.
However, the models tend to underpredict the gas volume fraction at the wall, though a clear
improvement in that region is obtained by the polydisperse model. Also, as in the case of small
bubbles, the model tends to underpredict the liquid velocity near the wall. This can be caused by
the underprediction of the wall shear stress by the model, as shown in Fig. 5.



Fig. 22. Liquid velocity profiles predicted by the model compared against the experimental data of Liu (1998) and the

model of Troshko and Hassan (2001b) for the case of large bubbles.

Fig. 23. Profiles of the RMS axial liquid velocity fluctuations predicted by the model compared against the experi-

mental data of Liu (1998) and the model of Troshko and Hassan (2001b) for the case of large bubbles.
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5. Conclusions

A two-phase flow model has been developed to study the bubble size effect on the radial gas
distribution in a vertical upward duct. The formulation is based on the two-fluid model for two-
phase flow. A polydisperse approach was used to represent the bubble size distribution. The
model was numerically solved for steady-state, fully developed flow with a finite differences
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method. The k–e model, modified for two-phase flow, was used to calculate the turbulence pa-
rameters. The boundary conditions near the wall were evaluated with a wall law adapted for two-
phase flow. Near the wall the turbulence was calculated considering the asymptotic behavior of
k–e model approaching a solid surface. With the proposed model the velocity profile does not
change with the distance from the wall where the boundary conditions are evaluated, ylim.
However, the height of the peak of the gas volume fraction is modified with ylim, probably due to
the assumptions necessary to obtain a simple meaningful model. Even with these drawbacks, the
two-phase boundary conditions perform better than the standard k–e boundary conditions.
The model was compared against the experimental data of Serizawa et al. (1975a,b), Zun

(1990), Liu and Bankoff (1993a,b), Liu (1998) and Liu and Wang (2001) in air/water flows in
vertical ducts. Good qualitative agreement was found and a reasonable quantitative fit was
achieved with reasonable assumptions.
The results indicate that a better understanding of the basic mechanisms influencing the bubble

behavior is still required. Particularly, it is necessary to develop models that consider interaction
between bubbles of different sizes in turbulent flows. Furthermore, the turbulence near the wall
requires a detailed investigation in order to allow a reliable prediction of the turbulent viscosity in
this region in presence of bubbles. The effect of the presence of the wall in the drag, lift and other
forces is not included in the model. In addition, the model is limited to low gas and liquid su-
perficial velocities where bubble breakup and coalescence can be neglected. Future work including
these phenomena will allow the prediction of a radial flow of bubbles of different sizes and the
evolution of the size distribution and regime transitions along the duct. The analysis presented
herein seems to indicate that proper modeling of the turbulence, mainly near the wall, is to be the
most important improvement to the model at this stage.
Even though the above-mentioned problems have yet to be solved, this study presents a

model able for the first time to predict the change of behavior in the radial phase distribution
in a turbulent two-phase flow in a vertical duct when different bubble size distributions are
present.
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